SAM as PPDG Middleware

Igor Terekhov FNAL, SAM project, CD, D0

PPDG Collaboration Meeting 13,14 July 2000 Argonne National Lab

Introduction

- History: developed for data access for D0 Run II:
 - / ~500TByte data per year;
 - / 250 KB/events; 1 GByte files;
 - / Total around 1PB
 - 68 institutions; 500 collaborators; 15 (and expanding) countries

SAM Services

- Catalogue all the data files
 - / types: 2 dimensions(tier, stream), flexible
 - / creator application
 - / multiple locations of data files
 - / complete access history
- Move the files (retrieve/store) to/from user app., from/to MSS, disks (any valid locations)
 - / Access to the underlying MSS
 - / Disk caching
- Resource allocation and management

Other SAM Services

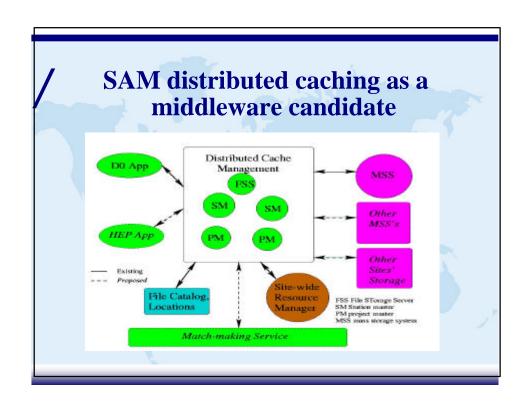
- Dataset query manipulation:
 - / storing
 - / looking up
 - / reusing
 - / combining
- Straightforward application interfaces
- Error recovery
 - / Server state persistent
 - / User may restart an activity

Global Data movement through the distributed disk cache

- / User app always reads from/writes to local file.
- / A user pushes file into (pulls from) SAM and doesn't want to know how/when the system relocates the file.
- / Disk allocation at each station en route: where to find room from a distributed pool of disks?
- / Every file transfer requires Resource Manager's authorization in order to heed network contention, MSS availability, etc.
- SAM Servers to be introduced below (rather than nodes) form a network. Files must be routed just like packets in traditional network

Distributed Caching: file retrieval in SAM

- Station is a collection of resources (CPU, disk, etc)
- Station Master is a distributed cache manager
- SM also runs projects (activity of data retrieval for "consumption")
- Distributed nature of data consumption:
 - / a set of machines comprise a station
 - / multiple project masters, consumers, processes
 - / SM's may get files from each other: global network


Distributed Caching: file Storage in SAM

- A station server File Storage Server (FSS) handles requests to import data (raw, processed,...) into SAM
- / The system (or physics group administrator) decides file destination
- / Intermediate locations may have to be used b/c:
 - / "Final" destination is not directly accessible
 - / Desirable to keep on "nearby" disks for sooner retrieval
- / FSS accepts file storage request, routes the file via other FSS's (stations), **FSS global network**.
- / Each interim disk location is managed by station

Example of Global data Movement in SAM

- / True challenge for a distributed system:
 - / import of a file from remote site (INPN Lyon) into SAM MSS
 - / the file is on an IDE disk on a desktop
 - / the site is connected via shared WAN with FNAL
 - / MSS at FNAL requires a minimal rate of transfer
 - / want to keep it locally (Lyon) as well
 - / have friends at CERN who may want the file
 - / want to declare it to FNAL central analysis disk
 - / handle errors! Any server may restart any time

Summary

- / For Grid middleware, SAM offers the capacity of global (fully distributed) disk cache management.
- SAM uses interfaces to external resource managers, data locations "database" and external Mass Storage, possibly Grid components
- SAM provides interfaces to user applications and hides physical data transfer.

More Information

- / Ninth Symposium on HDPC
- / SAM home page
- CHEP 2000 paper http://che

Presentation http://c